The holistic digital-first systems approach

Professor Jennifer Whyte Director, John Grill Institute for Project Leadership

sydney.edu.au/john-grill-institute

COS 00026A TEQSA PRV12057

Complex organisationally:

- Architects
- Engineers
- Builders / Contractors
- Sub-contractors
- Manufacturers, etc.

What can digital improve?

Mapping the building and fire safety regulatory system – high-rise residential buildings

Hackitt, J. (2017) Building a Safer Future, Independent Review of Building Regulations and Fire Safety, Interim Report, UK --- need for a 'golden thread' of information.

Overview

- Growth in computing power
- Transforming construction (policy)
- Digital buildings and infrastructure (research)
- Systems approach

Growth in Computing Power

	1950s	1960s	1970s	1980s	1990s	2000s
Hardware	Mainframe batch computing e.g. Whirlwind	High-end real-time e.g. DAC-1; PERT	Bitmapped screens; computer graphics	First personal computers	Laptops, internet, and first mobile computing	Mobile computing, sensors, electronic paper
Software	Automated engineering analysis tools e.g. STRUDL	Database Management Systems; e.g. ICES, IDMS	Standards, protocols and processes, e.g. IDEF0; CMM	PC-based CAD and project management; simulation; internet	Automated digital search; expert systems; project extranets	Visual decision- making tools; shared workspaces
New Capabilities	Automate analysis	Automate scheduling, accounting; share data	Text processing; widespread engineering automation; sharing of information	Diffusion of computers to smaller firms and individuals; know ledge formalization	Share information and knowledge across teams and firms	Agile, decentralized development methods using centralized data storage and applications

■ The Oxford Handbook of PROJECT MANAGEMENT

Whyte, J., & Levitt, R. (2011). Information management and the management of projects (Chapter 15). In *The Oxford Handbook of Project Management*. Oxford University Press.

Growth in Computing Power

	1970s	1980s	1990s	2000s	2010s	2020s
Hardware	Bitmapped screens; computer graphics	First personal computers	Laptops, Internet, and first mobile computing	Mobile computing, sensors, electronic paper	Smartphone; 3D printers; point clouds scanners; sensors; 3G evolution	Control rooms; autonomous robots; drones
Software	Standards, protocols, and processes, e.g., IDEF0; CMM	PC-based CAD and project management; simulation; Internet	Automated digital search; expert systems; project extranets	Visual decision- making tools; shared workspaces	Semantic Web and linked data, data mining, and machine learning tools and techniques	Platforms; digital twin; streaming and integrating real-time data; blockchain
New capabilities	Text processing; widespread engineering automation; sharing of information	Diffusion of computers to smaller firms and individuals; knowledge formalisation	Share information and knowledge across teams and firms	Agile, decentralised development methods Using centralised data storage and applications	Data analytics and data mining, instant communications, managing cyber- physical systems, simulation of process and product	Extensive remote, and hybrid (in- person and remote working, insights definition, data- driven decision- making, resilient platforms

Whyte, J., Farghaly, K., & Zhou, A. (2023). The digital revolution and complex project organizing: Towards project management (PM) 4.0? In G. Winch, M. Brunet, & Cao (Eds.), Research Handbook on Complex Project Organizing. Edward Elgar Research Handbooks in Business and Management, Edward Elgar Publishers.

Growth in Computing Power

- Devices are becoming cheaper, more distributed and more multi-functional
- Increasing in data availability and use
- Potentially wide-reaching implications for design, delivery, operation, and maintenance (increasing integration)
- Digital thread, model, twin, platform, analytics?

Overview

- Growth in computing power
- Transforming construction (policy)
- Digital buildings and infrastructure (research)
- Systems approach

NSW Roadmap

For digitalising planning, design, construction and operation of infrastructure

November 2022

UK experience:

- Digital as part of transforming construction
- Presumption in favour of offsite construction

Delivery Platforms for Government Assets Creating a marketplace for

manufactured spaces

Data Driven Infrastructure From digital tools to manufactured components

2018

Platforms Bridging the gap between construction + manufacturing

na

The Value of Platforms

in Construction

What are Product Platforms?

Product Platforms are an integrated approach to commonality and variability across multiple projects, providing the benefits of manufactured approaches while catering for the project-specific needs of clients and users of buildings. They are well adopted in other industries as a means of delivering mass customization: offering customer choice and high quality at near mass-produced prices.

Product Platforms span design, production, commercial and use, and comprise:

Standardised repeatable components

Economic

opportunities

Broader opportunities

Reflections

CONSTRUCTION INNOVATION HUB A kit of parts which are digitally designed and can be configured and combined with complementary, bespoke elements within a defined technical framework to produce customised buildings (or parts of buildings) that enable improved outcomes, best-value procurement and efficient delivery

Standardised repeatable processes

• A suite of repeatable processes that de-risk design and business case development through optimising best practice

People and relationships

• Longer-term and strategic relationships based on defined technical and commercial interfaces which allow innovation to take place at multiple levels of the supply chain and continuously improve, driving economies of repetition

Design	Fast-track development and approval using tried and tested solutions			Continuous value management	
Design	Robust, adaptable designs based on data and feedback			through the delivery process	
	Increased value in decarbonisation investments due to pipeline of demand		educed waste and	d over-ordering	
materials			Improved forecasting due to reduced volatility and variability of demand		
	Reduced variability in components, enabling higher utilisation of capital			Repeatable solutions enabling	
Manufacture	Enables increased investment due to repetition and continuity			procurement at scale	
Assembly	Mitigate delivery risks by simplifying processes and increasing certainty		Manufactured so engineered inter tolerances	solutions with pre- erfaces and improved	

https://www.constructioninnovationhub.org.uk/media/b3sfkkaz/the-value-of-platforms-final-april-2023.pdf

Overview

- Growth in computing power
- Transforming construction (policy)
- Digital buildings and infrastructure (research)
- Systems approach

	OPERATIONS	DESIGN	CONSTRUCTION		
	< LIFE CYCLE INT	EGRATION		>	
Data capture	Big Data and I		VIRTUAL REALITY		
	3D scanning and photogrammetry	Embe	dded sensors	GENCE	AND THE BUILT ENVIRONMEN
Data analysis and synthesis	Building information mod	ONVERG	Jennifer Whyte and Dragana Nikolić		
	GIS	Mach	ine learning	LOGY C	
Model development / visual interface	Mobile interfaces and AR	Simul	ation and VR	ECHNO	
	Computer-aided manufactur				
	<		CYBERSECURITY		SECOND EDITION

Fig 2-14: Integration of digital technologies across the design, construction, and operation fields (Source: adapted from Gerbert et al., 2016)

Virtual Reality and the Built Environment: Jennifer Whyte and Dragana Nikolić, ©2018

HOME CONSTRUCTION

Elizabeth Line, (Crossrail, £14.8bn+ (26.8bn+ AUD)

CONSTRUCTOR

Elizabeth Line, (Crossrail, £14.8bn+ (26.8bn+ AUD)

Nikolic, D., Maftei, L., & Whyte, J. (2019). Becoming familiar: how infrastructure engineers begin to use collaborative virtual reality in their interdisciplinary practice. *Journal of Information Technology in Construction*, *24*, 489-508. https://doi.org/10.36680/j.itcon.2019.026 HOME O

Crossrail

Elizabeth Line, (Crossrail, £14.8bn+ (26.8bn+ AUD)

Whyte, J., Stasis, A. and Lindkvist, C. (2016) Managing change in complex projects: configuration management; asset information and big data. International Journal of Project Management, 34, 2, 339–351

Whyte, J., & Davies, A. (2021). Reframing Systems Integration: A Process Perspective on Projects. Project Management Journal, 52(3), 237–249. https://doi.org/10.1177/8756972821992246

John Grill Institute for **Project Leadership**

Mission: To Improve Project Leadership

Major Projects

Digital Transformation

Making complex projects simpler

Home / Research / Digital Transformation

In today's fast-paced environment, complex projects require more than traditional methods. We look into integrating digital transformation into every aspect of project management - from AI methods for project delivery and governance, to digital transformation by projects, and how digital information transforms the project model.

1. New Al methods for project delivery and governance	+
2. Digital transformation by projects	+
3. How digital information transforms the project model	+

Our researchers draw on expertise across the University of Sydney, including computer science, data science and medicine, to understand areas of application such as asset management and mega projects.

We offer customised collaborative frameworks, such as competitive grants, to ensure efficient engagements and meet your needs.

"As the computational devices used in all aspects of project delivery are becoming progressively smaller and cheaper, digital information is changing what projects deliver, with information becoming itself a deliverable." - Whyte, 2019

Value of industry, policy and research collaboration

Al for Management and Organization

Project Studies

Research: Examples and Reflections from

A data-driven conceptual framework for

accidents

understanding the nature of hazards in railway

Dr Wei-Ting (Kevin) Hong **Research Lead**

Dr Jin Xue

Academic Lead

Professor Michael Bell

Experts

Professor Jinman Kim

Sponsoring digitally-enabled transformation in Government

Lessons from sponsors of digitally-enabled transformations in NSW Government August 2024

Overview

- Growth in computing power
- Transforming construction (UK policy)
- Digital buildings and infrastructure (research)
- Systems approach

A holistic digital-first systems approach

- Digital information for making choices and managing risk in building futures

The holistic digital-first systems approach

Professor Jennifer Whyte Director, John Grill Institute for Project Leadership - Jennifer.whyte@sydney.edu.acu

sydney.edu.au/john-grill-institute

Projects are future-oriented

Design and deliver vaccines

THERE REAL TREE

Adapting transportation

Sna

by Jorik Kleen on Unsplash

Response and recovery

Future forms of energy

Photo by David Cloc

Photo by Master Wen on Unsplash

Futures are uncertain

Technological choices

Relationship with the planet

Photo by Nick Nice on Unsplash

Rmah on Unsplash

Social decisions

horo by Owen Cannon on Unsplash

are generations

Information Use in Temporary Organizations

As in more permanent organizations, temporary organizations:

- 1. Access digital information through information systems provided by global software companies, and
- 2. Structure that information using standardized forms and workflows.

Yet, two salient and distinctive features of digital information in temporary organizations are:

- 1. Diverse types of digital information pre-exist before, are generated in and persist after temporary organizing;
- 2. Digital information is not located in an information system but rather transferred and used across multiple systems in the processes of organizing and as an output of organizing.

Example of PhD work: Al and Project Scheduling

Imperial College London Linked-data based constraint modelling and checking for AI assisted lookahead planning

PhD Project 2017-2020 – Dr Ranjith Soman (particular focus on constraints modelling for 6-week site look-ahead)

co-supervised Whyte (**civil engineering**) and Molina-Solana (**computer science**), with industry partner **Bentley Systems**

Soman: postdoc Imperial 2020-1, ETH Zurich 2021-2, lecturer TU Delft 2023

Digitally-enabled systems integration

Design change, change propagation and the visualisation

Chen, L. & Whyte, J. (2022) Understanding design: change propagation in complex engineering systesm using a digital twin and design structure matrix, *Engineering Construction and Architectural Management*, 29(8) 2950-75. Soman, R.K., Molina-Solana, M.: Automating look-ahead schedule generation for construction using linked-data based constraint checking and reinforcement learning. Automation in Construction 134, 104069 (2022) Farghaly, K., Soman, R.K., Whyte, J.: Visualizing real-time information through a construction production control room. In: EC3 Conference 2021, pp. 415-422. ETH, (2021) Farghaly, K., Soman, R., & Whyte, J.: cSite ontology for production control of construction sites. Automation in Construction, 158, 105224. (2024)

Singapore

In each context, the case firm developed modularization strategies successfully through using internal competences, or using external competences subject to availability and reliability of such competences

Zhou, S., Mosca, L., & Whyte, J. (2023). How the reliability of external competences shapes the modularization strategies of industrialized construction firms. *Construction Management and Economics*, 1-12.

Hong Kong

https://experience.arcgis.com/experience/7bfaa8d6b1 5c43dab033a3d5456e052c/

Project Analytics: NLP application

Engineering and Management (Å*)